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MolISTURE DIFFUSION COEFFICIENTS OF SINGLE WHEAT KERNELS
WITH ASSUMED SIMPLIFIED GEOMETRIES. ANALYTICAL APPROACH

S. Kang, S. R. Delwiche

ABsTRACT. Using a combination of soaking data and an analytical solution of the diffusion equation, moisture diffusion
coefficients of single wheat kernels were determined for nine commercial varieties representing six market classes of U.S
wheat. Two geometric conditions, the whole kernel as a prolate spheroid, and the endosperm (also modeled as prolate
spheroidal) and pericarp as separate components, were examined. Values from the analytical solution for a sphere were
adjusted by a geometrical correction factor to more closely represent the response of a prolate spheroid. The ranges in
diffusion coefficients were 0.39 x 10-10 to 1.04 x 1010 m2/s for endosperm and 0.04 x 1010 to 0.28 x 10-10 né/s for
pericarp. Compared to the pericarp, moisture diffused more rapidly in the endosperm. Soft wheats tended to have a more
permeable pericarp layer than hard wheats, which resulted in a greater overall rate of diffusion, despite the endosperm of

these two groups being nearly equivalent in diffusion coefficient value.

Keywords. Wheat, Moisture, Diffusion, Tempering.

empering is an essential step in maximizing flour

extraction from wheat kernels. Asthe pericarp of a

wheat kernel absorbs moisture, it toughens which

causes fewer small pericarp particles to be
released during milling. However, as kernel moisture
increases, certain rheological properties change, which may
result in a decrease of extracted flour. As part of the effort
to achieve an optimal amount of tempering before milling,
moisture absorption studies are conducted to understand
the distribution and movement of moisture within single
kernels of wheat or other small grains.

The diffusion coefficients of various seeds have been
determined by using the analytical solution of diffusion
equations for different assumed geometries. Hustrulid and
Flikke (1959) modified an analytical solution into a simple
exponential form and applied it to experimental drying data
(~43°C, 10 to 47% RH) of shelled corn. With the kernels
assumed to be homogeneous spheres, the exponential form
fit the experimental data well. The drying of peanutsin the
hull (32 to 43°C, 15 to 68% RH) was described analytically
with a finite cylindrical shape assumption (Young and
Whitaker, 1971). For peanut kernels (27 to 43°C, 13 to
80% RH), the analytical solution assuming finite or infinite
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cylindrical shapes predicted the experiment results with
good accuracy (Whitaker and Young, 1972). The infinite
cylindrical shape assumption was also used in a moisture
diffusion study of heat and mass transfer in rough rice
during drying at three temperatures (49, 66, and 82°C)
(Husain et a., 1973). The diffusivity of starchy endosperm
in white rice during drying (35 to 55°C) was determined
using a spherical shape assumption (Steffe and Singh,
1980). Muthukumarappan and Gunasekaran (1990) tested
analytical solutions for the adsorption of water vapor (25 to
40°C, 75 to 95% RH) within a corn kernel, assuming the
kernel to be an infinite plane sheet, an infinite cylinder or a
sphere. Among these assumptions, the infinite sheet model
was the best at predicting vapor diffusivity.

Severa researchers have investigated moisture diffusion
coefficient estimation for individual wheat kernels. Babbitt
(1949) obtained a vapor diffusion coefficient and moisture
content of whole kernels from adsorption and desorption
(drying) experiments, assuming the wheat kernel as a
homogeneous sphere. This assumption has been used in
other wheat research that involved either drying (Becker
and Sallans, 1955, 1956; Jaros et a., 1992) or absorption
during soaking (lgathinathane and Chattopadhyay, 1997).
Becker (1959) developed genera solutions for a wheat
kernel of arbitrary shape in the neighborhood of time zero
and time infinity. In comparing an analytical solution for a
spherical shape and Becker's solution for an arbitrary
shape, the importance of the shape effect on the calculated
diffusion coefficient was clearly evident. Conversely, on
other materials such as tobacco leaf (Walton and Casada,
1986) or a corn kernel (Walton et al., 1988) the shape was
determined to be less important than treating the mass as
two components (internal and external resistances) rather
than one. The solution in the neighborhood of time zero
was applied to drying (Becker, 1959) and immersion
(Becker, 1960) experiments with wheat kernels. Fan et al.
(1961) used Becker’'s solution for arbitrary shape to
calculate diffusion coefficients of severa different wheat
kernels under various temperature conditions.

Transactions of the ASAE

VoL. 43(6): 1653-1659

2000 American Society of Agricultural Engineers

1653

o



fpe 1588 ns

7/9/01 3:25 PM Page 1654

The study of water movement through different regions
of the wheat kernel by Hinton (1955) showed that the
diffusion rates within the pericarp were lower than other
regions including the endosperm. Because of these
differences, the diffusivity of endosperm gives little
information on the diffusivity of the whole wheat kernel
(Glenn and Johnson, 1994). Therefore, diffusion
coefficients of endosperm and pericarp in wheat kernels
should be determined separately to obtain more accurate
information of moisture migration and distribution.

From these studies, it is clear that the analytical
solutions based on a proper choice of geometrical shape
can predict the absorption, adsorption, and desorption
patterns of moisture in single kernels. However, for more
accurate estimations of grain moisture diffusion
coefficients, certain correction factors (i.e., characteristic
length, sphericity) should be further included in the
analytical solution, along with consideration of geometrical
shape and the use of a two-component (endosperm and
pericarp) model, similar to that initially proposed by
Walton et a. (1988).

OBJECTIVES

The objective of this research was to better understand
the relationship between moisture movement in the wheat
kernel and the shape and composition of the kernel. An
earlier article (Kang and Delwiche, 1999) described afinite
element solution for kernel moisture diffusion. The present
article explores the same, but through application of an
analytical solution. The specific objectives were to:
(1) determine values of diffusion coefficients of the
endosperm for different geometrical and physical
assumptions; (2) determine values of diffusion coefficients
of the pericarp, using the determined values of the
endosperm; and (3) compare the result of this two-
component model with that of the homogeneous whole
kernel model.

ANALYTICAL SOLUTION OF DIFFUSION
EQUATION

IDEAL GEOMETRIES OF ONE COMPONENT

The diffusion equation for mass transport within several
regular geometric shapes has been analytically solved with
the following initial and boundary conditions (Crank,
1975):

1. The initiad concentration of moisture is uniform
throughout the kernel.

2. At time t = 0, the surface moisture content is in
equilibrium with the environment, and surface
resistanceis negligible.

3. For time t > 0, the surface is maintained in
equilibrium with a constant environment.

4. The moisture content of the kernel approaches
equilibrium with the environment at the end of the
tempering experiment.

Other assumptions are made for the analytical solutions:

1. The diffusion coefficient of a wheat kernel is
constant and not a function of moisture
concentration.

2. Thekernd is considered isothermal and heat transfer
is neglected.
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3. The kernel composition is homogeneous and

isotropic.

4. The volume change of the kernel is negligible

during the tempering process.
Pearled wheat kernels were assumed to have a uniform
endosperm. To understand the differences between results
using the two-component (endosperm and pericarp) model
and the homogeneous model, the diffusion coefficient of a
uniform whesat kernel was also determined.

Analytical solutions of the diffusion equation with the
above-mentioned conditions can be expressed in terms of
the moisture ratio. The general analytical solution for an
infinite plane sheet, an infinite cylinder, and a sphere is
given asfollows (Crank, 1975):

MR= M= Min _ 4 Y Baexp(-AfFo) (1)
Meq— Min n=1
where
MR =moisture ratio (dimensionless quantity ranging
fromQ0to 1)

m; = average moisture content at timet (%, dry basis)
Mg, =equilibrium moisture content at kernel surface
(%, dry basis)
m;, =initial moisture content of whole kernel region
(%, dry basis)
= constant [= (2n — 1)(1U2) for an infinite plane
sheet, r.a,, for an infinite cylinder, and nrtfor a
sphere]
B, =constant (= 2/A.2 for an infinite plane sheet,
4/A 2 for an infinite cylinder, and 6/A .2 for a

An

sphere)
Fo = Fourier number = Dt/L .2
D =diffusion coefficient (m2/s)
t =timevariable (s)

L. =characteristic length (m)
For an infinite plane sheet:
L. =Volume/Surface area
= |0
= half-thickness of sheet
For an infinite cylinder:
L. =2xVolume/Surface area
= rC
= radius of cylinder
For a sphere:
L. =3 xVolume/Surface area
= rS
= radius of sphere
rsay, = nth positive root of Bessel function Jy(r.0,,) =0
Jo(x) = Bessel function of thefirst kind of order zero

Among analytical solutions for different shapes (infinite
plane sheet, infinite cylinder, finite cylinder and sphere),
moisture ratio curves (MR vs time) from absorption and
desorption experiments have generally matched those from
an analytical solution for shapes that resemble the shapes
of agricultural products:. finite cylinder for the peanuts in
the hull (Young and Whitaker, 1971), finite and infinite
cylinder for peanut kernels (Whitaker and Young, 1972),
infinite cylinder for rough rice kernels (Husain et al.,
1973), sphere for white rice (Steffe and Singh, 1980), and
infinite plane sheet for corn kernels (Muthukumarappan
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and Gunasekaran, 1990). Among these geometries, the
shape of awheat kernel is closest to that of a sphere; hence,
an analytical solution for a sphere was chosen as the
starting point to be used in determining the diffusion
coefficients of whole and pearled wheat kernels.

TwO-COMPONENT SPHERICAL M ODEL

It is assumed that the concentration gradient at any point
on the surface of endosperm is dC/dr, and the local rate of
absorption per unit area is DgngogpermdC/0r, Where Cis the
moisture concentration in a wheat kernel and Dgngosperm 1S
the diffusion coefficient of the endosperm. This means that
the rate of absorption per unit area of wheat surface is
proportional at any time to the difference between the
saturated concentration, Cggyyrateq: @nd the actual
concentration in the wheat at the interface, Cqiace- Thus,
the surface condition can be written as the following
(Danckwerts, 1951):

_Dendosperm oC/or = (Dpericarp/ 6) x (Csurfa:e - Csaturated)
2

where Dpericap/0 is the proportionality constant, Dpericarp
is the diffusion coefficient of the pericarp, and o is the
thickness of the pericarp.

Moisture ratio can be obtained from the solution for the
surface condition (eg. 2), which is (Crank, 1975):

> 6Bi 2 exp (—Br% FOendosperm)

MR=1-
o (B2 +Bi(Bi-1))

©)

where
B, =therootsof (3, cot B,,+Bi =1
Bi = Dper,&,j,r L /(Dendo md)
= mass transfer Biot number

The Biot number represents the ratio of the interna
moisture transfer resistance to the external moisture
transfer resistance, which includes the combination of
resistances of the pericarp, the pore space (if any) between
the endosperm and pericarp, and the external boundary
layer, with the latter two resistances considered to be
comparatively small (Walton and Casada, 1986; Walton et
al., 1988).

The diffusion coefficients of endosperm and pericarp
are two unknown variables in equation 3. Values for
Dendosperm are determined by application of the one-
component model (eq. 1) for pearled wheat, whereupon
values for Dyeicap are obtained by application of the two
component model (eg. 3).

NON-SPHERICAL GEOMETRY CORRECTION

A prolate spheroid is generated by rotating an ellipse
about its major axis, known as the polar axis upon rotation.
Half the polar axis is the polar radius (c), and the other
semi-axis is the equatorial radius (a). Generally, the mean
kernel volume calculated from the weight and density of
wheat kernels is close to the volume calculated from the
equatorial and polar radius of wheat (Becker, 1959).
Therefore, radii measurements were used to calculate the
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volume of wheat kernels and endosperm. The volume and
surface area of aprolate spheroid are:

Volume = 41a2c/3 @
Surface area = 2ma{ a + (c/e)sin-le} (5)

where
e= [(CZ — a2)/02] 1/2
= ellipticity of a prolate spheroid (= O for a sphere)

Among the variables in the analytical solution for the
sphere, the characteristic length (L. and the Fourier
number (Fo) provide the method of adjustment of the
solution to the prolate spheroid, which is closer than a
sphere to the shape of a wheat kernel. The characteristic
length isrelated to shape and size, and reduces to the radius
in the case of the sphere. It can be described using the ratio
of volume to surface area. The characteristic length for a
prolate spheroid is:

L. =3 x Volume/Surface Area
= 2ac/{ a+(c/e)sinle} (6)

A sphere with the same volume (V) as a prolate
spheroid is said to have an equivalent spherical radius (rg).
For the same moisture ratio curve, the Fourier number of a
sphere (Fogg) with equivalent spherical radius is the same
as the Fourier number of the prolate spheroid (Fo,g). From
the characteristic lengths of the sphere ancf prolate
spheroid, the surface area of a prolate spheroid (S,¢) can be
described with the characteristic length of a sphere of equal
volume (V) and the ratio of the surface area of a sphere of
equal volume (Sy) to the surface area of the prolate
spheroid. Thus, the moisture diffusion coefficient (D) of
the prolate spheroid can be determined from the
relationship between the Fourier number of the sphere and
that of the prolate spheroid. The Fourier number of a
prolate spheroid is:

FOps = Dps t/(3V/Sye)?

= Dys t/(3V/Se9? X (Spe/ Seo)?
= [DpS/(SS/SpS)Z] t/r o
= Dgg t/ros? = FOgg (7)
which gives:
Des (Ses/ Sps)? (8)

The factor See/Sysis known as sphericity and is the ratio of
the surface area of a sphere of equal volume to the surface
area of the prolate spheroid.

Equation 1 shows that the moisture ratio depends on the
Fourier number. For improved accuracy in determining the
diffusion coefficient value, the effect of sphericity and
ellipticity of the prolate spheroid shape should be
considered. The moaisture diffusion coefficient of a wheat
kernel is thus determined by using the analytical solution
for spherical shape with the characteristic length of a
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prolate spheroid. Alternatively, it may be determined by
using the analytical solution for a spherical shape,
whereupon the value is corrected by the sphericity.

PROCEDURE
WHEAT

Nine wheat varieties, obtained from the USDA Wheat
Quality Laboratories at Fargo, North Dakota, Manhattan,
Kansas, and Pullman, Washington, were as follows (with
wheat class identified in parentheses): Grandin [hard red
spring (HRS)], Amidon (HRS), Renville (durum), Jagger
[hard red winter (HRW)], TAM107 (HRW), Madsen [soft
white winter (SWW)], Rely (club), Penawawa [soft white
spring (SWS)], and Vanna (SWS). These varieties represent
popular commercial releases grown in the Great Plains or
Pacific Northwest regions of the United States. Each
variety was represented by one sample. Samples were air-
dried, sealed, and kept under refrigeration for 9 to 12
months prior to immersion testing. The sample size of
pearled and intact wheat for each variety was 10to 12 g.

IMMERSION EXPERIMENT

To obtain more uniformly sized kernels, a no. 8 sieve
was used to remove broken and small kernels. Twenty
grams of each variety was pearled with a Strong Scott
pearler (Seedboro Equipment Co., Chicago, Ill.). The
lengths along three principal axes were measured for thirty
pearled and thirty whole wheat kernels of each sample, and
mean values calculated. Half the longest length of the three
principal axes was defined as the polar radius, and the
mean of the other two half-lengths was defined as the
equatorial radius. Table 1 shows the polar radius, equatorial
radius and ellipticity of pearled and whole wheats that were
used in the immersion experiment. The shape of pearled
Renville (e = 0.86) was more ellipsoidal than the other
varieties. Penawawa (e = 0.60) was the closest to being
spherical. After pearling, pearled and whole samples were
held in a room at 22°C and approximately 65% RH for
72 h. Initial moisture contents of pearled and whole wheat
kernels were measured according to the air-oven method
for whole grain (130°C, 19 h) following ASAE standard
S352.2 (ASAE, 1998).

Table 1. Kernel dimensions (in mm) and ellipticity
of pearled and whole wheats*

Pearled Whole

Equa- Equa-
Polar toriadd  Ellip- Polar torid Ellip-
Variety Classt Radius Radius ticityt Radius Radius ticity
Grandin  HRS 200 153 064 293 159 084
Amidon  HRS 200 140 071 309 148 088
Renville  Durum 270 1.38 0.86 358 144  0.92
Jagger HRW 221 147 075 308 153 087
TAM107 HRW 2.19 147 0.74 3.20 158 087
Madsen SWw 181 144 0.61 334 165 087
Rely Club 18 131 072 303 139 0.89
Penawawa SWS 171 13 060 312 156 0.87
Vanna SWS 2.10 1.46 0.72 3.23 148 0.89

*  Means of 30 kernels per variety.

Tt Hard Red Spring (HRS), Hard Red Winter (HRW), Soft White Winter
(SWW), Soft White Spring (SWS).

1 Ellipticity = [(c2 — a2)/c?]Y/2, where a and ¢ are the equatorial and
polar radii of a prolate spheroid, respectively.
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During immersion, room temperature and water
temperature were 22°C and room relative humidity was
55% RH. Every fifteen minutes, each sample (ca. 10 g)
was taken out of the water bath, blotted on filter paper
(Schleicher & Schull Co., No. 588, 18 cm diameter) to
remove surface moisture, weighed, and then returned to the
bath. The total time for each sample was 240 min (16 x
15 min).

MolisTture DiFFUsiON COEFFICIENT FROM
ANALYTICAL SOLUTION

The mean radius, equivalent radius and sphericity of
pearled and whole wheat kernels are shown in table 2.
Those were used to determine the moisture diffusion
coefficient in the analytical solution.

For the two-component model, the diffusion coefficient
value of endosperm was determined first from the pearled
sample data, and then that of the pericarp, using the result
for endosperm. An iteration procedure was used to
determine the best moisture diffusion coefficient of the
endosperm (Dengosperm)- The procedure sought the lowest
sum of the sguare of deviations between the experimental
moisture ratios of the pearled wheat and the calculated
moisture ratios from the analytical solution (eg. 1) at 15-
min time increments. The procedure stopped when the
difference between moisture diffusion coefficients of
successive iterations was less than 10713 m2/s. Three
different characteristic lengths were used in the analytical
solution: (1) the average of two equatorial and one polar
radii of wheat; (2) the radius of a sphere that has the same
volume as the prolate spheroid; and (3) three times the ratio
of volume to surface area of a prolate spheroid (eqg. 6).

The diffusion coefficient of pericarp (Dpericap) Was
determined by the same iteration method ando equation 3,
based on the determined diffusion coefficient of
endosperm. For al samples, the thickness of pericarp was
assigned to be 0.125 mm, based on actual measurement of
arepresentative sample.

For the homogeneous model, the diffusion coefficient of
whole intact kernel (Dyynole kernet) Was determined using the
same iteration method as with the endosperm. The three
different characteristic lengths for the analytical solution
were determined from the measurements of the whole
wheat kernels.

Table 2. Dimensions (in mm) and sphericity of pearled and
whole wheat used in the analytical solution procedure

Pearled Whole
Equivaent Equivaent
Variety Radius® Radiust Sphericity Radius Radius Sphericity
Grandin  1.67 1.67 0.99 1.95 1.95 0.94
Amidon 157 157 0.98 1.89 1.90 0.92
Renville  1.73 1.73 0.93 1.95 1.95 0.89
Jagger 1.68 1.68 0.97 1.93 194 0.93
TAM107 1.67 1.68 0.97 1.99 2.00 0.93
Madsen  1.63 155 0.99 2.08 2.09 0.93
Rely 147 1.48 0.98 1.80 1.80 0.91
Penawawa 1.47 1.47 0.99 1.97 197 0.93
Vanna 164 1.65 0.98 1.92 1.92 0.91

* Radius = (2a + ¢)/3 , where a and c are the equatorial and polar radii
of aprolate spheroid, respectively.

Tt Equivalent radius equals the radius of a sphere that has the same
volume as the corresponding prolate spheroid of table 1.
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Table 3. Diffusion coefficients of pearled wheat
at various geometriesat 22°C
Diffusion Coefficient (m?/s x 1010)
Sphere at Equivalent
Volume of Prolate Prolate
Variety Sphere Spheroid Spheroid RMSD(MR)*
Grandin 0.62 0.62 0.60 0.0297
Amidon 0.41 0.41 0.39 0.0299
Renville 0.55 0.55 0.48 0.0183
Jagger 0.70 0.70 0.67 0.0414
TAM107 1.09 1.09 1.04 0.0292
Madsen 0.48 0.43 0.42 0.0306
Rely 0.47 0.48 0.46 0.0297
Penawawa 0.44 0.44 0.44 0.0313
Vanna 0.44 0.45 0.43 0.0230
Ave= 0.0292

* Square root of the mean of the sguared differences between the
experimental and analytical moisture ratios (eg. 1) calculated at 15-
min intervals over the course of a soaking experiment.

RESULTS AND DiscussioN
DirFrusioN COEFFICIENT OF A PEARLED WHEAT K ERNEL

Moisture diffusion coefficients of pearled wheat kernels
(endosperm) are shown in table 3. Because the Fourier
number is the same for al three shapes, equation 1 will
make the root mean square of deviations (RMSD) value the
same for al three geometric assumptions. The diffusion
coefficient for the prolate spheroid was smaller than that
for the sphere. The diffusion coefficient of TAM107 was
higher than other varieties, and soft white winter (Madsen)
and soft white spring (Penawawa and Vanna) varieties
showed similar values. Across al varieties, diffusion
coefficient values of the endosperm were within the range
of 0.39 x 10-10t0 1.04 x 10-10 m2/s,

The moisture diffusion coefficient values of a whole
wheat kernel, based on the homogenous model (eg. 1),
were within the range of 0.04 x 10100 0.29 x 1010 m?/s
(table 4). The diffusion coefficient values of the pericarp
were within the range of 0.04 x 10-19t0 0.28 x 1010 m?/s,
The diffusion coefficients of endosperm were larger than
those of pericarp, which is in agreement with historical
research that concluded that the moisture absorption rate of
endosperm is faster than that of pericarp (Hinton, 1955).
Unlike other varieties, the diffusion coefficients of the

Table 4. Diffusion coefficients [D (m2/s x 1010)]
of whole wheat and pericarp at 22°C

Whole Kernel
(Homogeneous Model)

D, Sphere Pericarp Alone

(equivalent D, E—
D, volumeprolate Prolate RMSD RMSD Biot
Variety Sphere spheroid) Spheroid (MR)* Dt (MR) No.
Grandin  0.18 0.18 016  0.0139 0.12 0.0628 2.85
Amidon  0.17 0.17 0.14 0.0177 0.13 0.0604 4.59
Renville  0.17 0.17 013 0.0183 0.11 0.0664 3.06
Jagger 0.19 0.19 0.16 0.0150 0.11 0.0537 2.38
TAM107 0.05 0.05 0.04 0.0439 0.04 0.0153 0.54
Madsen  0.20 0.20 0.17 0.0245 0.15 0.0454 5.55
Rely 0.23 0.23 019 0.0274 0.17 0.0660 5.03
Penawawa 0.29 0.29 025 0.0240 0.28 0.0325 9.48
Vanna 0.25 0.25 021 0.0204 0.22 0.0526 7.13

Ave=  0.0228 Ave= 0.0506

* Seefootnote to table 3.
Tt Thediffusion coefficient refersto that for the pericarp aone; whereas,
the RMSD(MR) refers to the whole kernel.
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pericarp of soft white spring varieties, Penawawa and
Vanna, were high and each was very close to the three
diffusion coefficients listed for the whole kernel. It seems
moisture in the pericarp of this class moves faster than in
that of other classes. For TAM107, the diffusion
coefficients of the whole and the pericarp were also
equivalent, abeit very low. Given the high vaue of
diffusion coefficient for endosperm aone, it seems that
moisture movement in the whole kernel of TAM107 was
greatly restricted by the pericarp. The vaue for Biot
number in table 4 confirms that the moisture transfer
resistance in the pericarp of TAM107 is higher than in the
endosperm. Biot numbers of soft white winter and spring
varieties were higher than those of other classes. The Biot
number for mass transfer shows the ratio of the internal
mass transfer resistance to the external mass transfer
resistance. A Biot number much smaller than 1.0 makes it
possible to assume a uniform moisture distribution across a
solid at any time during a transient diffusion process,
because the external resistance is large compared to the
internal resistance. Conversely, a large value of the Biot
number implies that the moisture gradients within the solid
are significant, i.e., that the moisture difference across the
endosperm is much larger than that across the pericarp.
Averaged over al varieties, model accuracy, as defined
by the square root of the average sum square of differences
between the modeled and analytical moisture ratios, was
surprisingly better for the homogeneous model
(RMSD,,, = 0.0228) than the two-term model (RMSD,, =
0.0506, table 4). It appears that only in cases when the Biot
number is very low, such as with TAM107 (Bi = 0.54),
does accuracy improve with the use of the more complex
(i.e., two-component) model (fig. 1). Conversely, the
homogeneous model (eg. 1) is more accurate than the two-
component model when the pericarp is not as great a
barrier to moisture transfer. For example, Penawawa, with
a Biot number (= 9.5) much larger than one, was more
accurately modeled by a homogeneous model (RMSD =
0.024) than by a two-component model (RMSD = 0.032),
which tended to underestimate the rate of water penetration

(fig. 2).
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Figure 1-Comparison of moisture ratios determined by soaking
(experimental), a one-component (homogeneous) diffusion model,
and a two-component diffusion model for the variety ‘TAM 107",
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Figure 2-Comparison of moisture ratios determined by soaking
(experimental), a one-component (homogeneous) diffusion model,
and a two-component diffusion model for the variety ‘Penawawa’.

APPLICATION OF GEOMETRICAL CORRECTION TO
HisToRICAL DATA

A comparison between the diffusion coefficient from
Becker’s solution for spherical shape (Becker and Sallans,
1955), Becker’'s subsequent solution for an arbitrary shape
(Becker, 1959), and the present method of applying a
prolate spheroid correction factor to a spherical shape
solution was conducted. Sphericity was caculated from
Becker's wheat data (1959) and used to obtain the diffusion
coefficient of wheat based on the analytical solution for a
sphere with a prolate spheroid shape correction. Sphericity
of Becker's wheat was 0.94 and the determined diffusion
coefficient value was close to the diffusion coefficient from
Becker’s equation for an arbitrary shape (table 5). Because
Becker’s solution is for the neighborhood of time zero, it is
possible to have an error if long-term absorption or
desorption data is considered. His equation can be applied
to any shape of agricultural products. However, it is not
convenient to determine the constant value of the second
derivative term in his equation for each experiment.

Table 5. Application of sphericity correction factor to historical
published values of diffusion coefficients of
whole kernel wheat [cv. Thatcher (HRS)]

Diffusion Coefficient (m2/s x 1010)

Sphericity
S Correction
Temper- Historical Values Factor Applied

ature Spherical Arbitrary to Spherical
(°C Geometry* Geometryt Geometry Valuet
24.7 0.097 0.085 0.086
44.3 0.375 0.304 0.333
50.0 0.565 0.432 0.501
52.8 0.635 0.505 0.563
59.4 0.952 0.730 0.845
67.3 1.50 113 1.33
79.5 2.77 2.13 2.46

* From Becker and Sallans (1955).

t From Becker (1959).

T Sphericity = 0.94, as determined from dimensional values reported in
Becker (1959).
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Conversely, the analytical solution for idealized geometries
of agricultural products, such as wheat, with physica
property correction, is easier to use and can reasonably
determine moisture diffusion coefficient values.

SUMMARY AND CONCLUSIONS

In this study, the average moisture ratio from immersion
data from soaking experiments of whole and pearled
(pericarp removed) wheat kernels were related to an
analytical solution of diffusion equations for a spherical
shape. In the most general form of implementation, the
analytical solution of the simplest geometrical shape
(e.g., sphere for a wheat kernel) that resembles the
agricultural product was selected in the eguation for
moisture ratio (eg. 1). With use of immersion data to obtain
the moisture ratio, this equation was iteratively solved for
the diffusion coefficient. For an improved estimate of the
moisture diffusion coefficient, the prolate spheroid shape
was introduced by using sphericity and ellipticity as
geometrical correction factors in the analytical solution for
a spherical shape. This procedure was used to determine
the diffusion coefficient of wheat endosperm during
isothermal moisture tempering. The specific conclusions
are asfollows:

1. For a wheat kernel, a prolate spheroidal geometry
correction factor produces a more accurate estimate
of the diffusion coefficient.

2. Low Biot numbers (< 1) favor the use of a two-
component (endosperm and pericarp) moisture
transfer model.

3. The greater the ellipticity of the wheat kernel, the
lower the values of diffusion coefficient become.
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